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Given an (unnormalized) target distribution      that is hard to sample from and simple proposal 

distribution        , the Metropolis-Hastings (MH) algorithm generates a sequence of iterates         

whose distribution, with sufficiently large  , approximate  . However, this fact is rarely proven when 

the algorithm is presented. This document attempts to shed some light on the subject in a way that is 

understandable to, say, an upper-level engineering undergraduate or introductory graduate student 

who has had some basic exposure to the method. 

 MH is typically stated as follows: 

Metropolis-Hastings(  ,  , ) 

For            do: 

1. Sample    from        ). 

2. With acceptance probability             (  
 (  ) (  | 

 )

             
), set        . 

3. Otherwise, set        . 

 

If      is set in Step 2, we call it an accepted step, otherwise we call it a rejected step. 

It is usually stated without proof that as   grows large and with relatively mild restrictions on   and  , 

the distribution of         approaches  .  But why? The answer is completely unobvious on a first, 

second, or even third glance. The acceptance probability is mysterious, with its naughty minimization 

term.  It fights against our instincts, as we were taught as gospel that nonsmooth transformations wreak 

havoc with probability distributions. 

Students at this point typically nod with deer-like expressions on their faces, assuming the professor 

knows some black magic that leads to a proof.  In fact, he/she is probably employing the trusted Jedi 

mind trick, taking a tip from good ol’ Fermat with his famous margin scribbles.  (If you substitute 

“reader” for “student” and “author” for “professor”, this description describes hundreds if not 

thousands of academic papers.) 

Proof. 

First, the detailed balance criterion of a Markov Chain with transition distribution              states 

that a stationary distribution      satisfies                                  .  This is a necessary 

condition for a random walk to asymptotically reach a stationary distribution; additional considerations 

like ergodicity (that is, there is a nonzero probability of reaching any state from any other state) must be 



satisfied to make the walk truly converge to  . A good professor will wave his/her hands about detailed 

balance.  Few tread into the next steps of the proof. 

Now, we must examine whether each subsequent iterate of the MH algorithm satisfies detailed balance.  

The argument is somewhat subtle. 

The transition distribution of the MH sampling sequence is given by distribution of      after each inner 

MH loop completes, given the value of    at the beginning of the loop.  Examine the following 

equations.  Let Case A denote the case where         and let Case B indicate        .  A Case A 

transition can only be achieved with an accepted MH step, which happens with probability: 

                                 

A Case B transition can be achieved with an accepted step that luckily lands back at the same point as 

well as a rejected step: 

                          ∫         (          )  
 

  

 

The first term is the probability of luckily being accepted back on the same point, and the second term is 

the probability of a rejection. Don’t get hung up on the complexity of the second term, as the form of 

the transition distribution for Case B doesn’t really matter.  Here, we have        , and so it is trivially 

evident that the detailed balance condition                                   is satisfied in Case 

B. 

 

Now let’s return to Case A and expand the   in the transition probability, then apply a bit of algebra: 
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Observe that the two terms inside the minimization are symmetric with respect to switching of    and 

    .  Simply switching them in the equation above, we have 
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So, in Case A, we have 
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Fulfilling the detailed balance condition as desired.  Since detailed balance holds for both Case A and 

Case B, it holds everywhere. 

Derivation of MH. 

Another way to think about MH is how should we design the acceptance probability function         so 

that detailed balance is satisfied?  First, it doesn’t matter what   is for Case B to hold.  So, let’s turn our  

attention to detailed balance in Case A.  Expanding this out, we require that   satisfy: 

                                                           

                             

In other words, 
          

          
 

                 

               
 with some algebraic manipulation. 

For   to yield a valid probability, it must be nonnegative and no greater than 1.  By inspecting what 

happens when            is limited by 1, we see that            becomes not limited, and the 

equation holds as it should.  The equation also holds in the opposite condition when the numerator is 

not limited and the denominator is. Hence, the MH acceptance probability satisfies this requirement. 

Metropolis-Hastings is Optimal. 

An interesting thought experiment would ask to design a different acceptance probability function.  Let c 

be the rhs of the above equation.  Then can we design a function          whose range is in [0,1] and 

satisfies                    for all x,y,c? 

Yes, this is obviously true for any constant scaling in (0,1], and other solutions may exist as well. 

But can we design a function that leads to fewer rejections than the Metropolis acceptance probability?  

Metropolis has a nonzero probability of rejecting whenever          
 (  ) (  | 

 )

             
 is less than 1.  But 

if we were to use a higher probability of accepting the sample, say                  , then we’d 

have a problem:                   
                 

               
                     .  Hence, the 

Metropolis acceptance probability leads to a maximum number of accepted steps. 

 


